Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 121(2): 150-156, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28457719

RESUMO

Glycosylasparaginase (GA) is an amidase that cleaves Asn-linked glycoproteins in lysosomes. Deficiency of this enzyme causes accumulation of glycoasparagines in lysosomes of cells, resulting in a genetic condition called aspartylglycosaminuria (AGU). To better understand the mechanism of a disease-causing mutation with a single residue change from a glycine to an aspartic acid, we generated a model mutant enzyme at the corresponding position (named G172D mutant). Here we report a 1.8Å resolution crystal structure of mature G172D mutant and analyzed the reason behind its low hydrolase activity. Comparison of mature G172D and wildtype GA models reveals that the presence of Asp 172 near the catalytic site affects substrate catabolism in mature G172D, making it less efficient in substrate processing. Also recent studies suggest that GA is capable of processing substrates that lack a chitobiose (Glycan, N-acetylchiobios, NAcGlc) moiety, by its exo-hydrolase activity. The mechanism for this type of catalysis is not yet clear. l-Aspartic acid ß-hydroxamate (ß-AHA) is a non-chitobiose substrate that is known to interact with GA. To study the underlying mechanism of non-chitobiose substrate processing, we built a GA-ß-AHA complex structure by comparing to a previously published G172D mutant precursor in complex with a ß-AHA molecule. A hydrolysis mechanism of ß-AHA by GA is proposed based on this complex model.


Assuntos
Aspartilglucosaminúria/enzimologia , Aspartilglucosilaminase/química , Aspartilglucosilaminase/genética , Dissacarídeos/metabolismo , Mutação , Asparagina/análogos & derivados , Asparagina/química , Asparagina/metabolismo , Aspartilglucosaminúria/metabolismo , Aspartilglucosilaminase/metabolismo , Biocatálise , Cristalização , Cristalografia por Raios X , Glicopeptídeos/metabolismo , Humanos , Hidrólise , Lisossomos/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Especificidade por Substrato
2.
Orphanet J Rare Dis ; 11(1): 162, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906067

RESUMO

Aspartylglucosaminuria (AGU), a recessively inherited lysosomal storage disease, is the most common disorder of glycoprotein degradation with a high prevalence in the Finnish population. It is a lifelong condition affecting on the patient's appearance, cognition, adaptive skills, physical growth, personality, body structure, and health. An infantile growth spurt and development of macrocephalia associated to hernias and respiratory infections are the key signs to an early identification of AGU. Progressive intellectual and physical disability is the main symptom leading to death usually before the age of 50 years.The disease is caused by the deficient activity of the lysosomal enzyme glycosylasparaginase (aspartylglucosaminidase, AGA), which leads to a disorder in the degradation of glycoasparagines - aspartylglucosamine or other glycoconjugates with an aspartylglucosamine moiety at their reducing end - and accumulation of these undegraded glycoasparagines in tissues and body fluids. A single nucleotide change in the AGA gene resulting in a cysteine to serine substitution (C163S) in the AGA enzyme protein causes the deficiency of the glycosylasparaginase activity in the Finnish population. Homozygosity for the single nucleotide change causing the C163S mutation is responsible for 98% of the AGU cases in Finland simplifying the carrier detection and prenatal diagnosis of the disorder in the Finnish population. A mouse strain, which completely lacks the Aga activity has been generated through targeted disruption of the Aga gene in embryonic stem cells. These Aga-deficient mice share most of the clinical, histopathologic and biochemical characteristics of human AGU disease. Treatment of AGU mice with recombinant AGA resulted in rapid correction of the pathophysiologic characteristics of AGU in non-neuronal tissues of the animals. The accumulation of aspartylglucosamine was reduced by up to 40% in the brain tissue of the animals depending on the age of the animals and the therapeutic protocol. Enzyme replacement trials on human AGU patients have not been reported so far. Allogenic stem cell transplantation has not proved effective in curing AGU.


Assuntos
Aspartilglucosaminúria/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Animais , Aspartilglucosaminúria/enzimologia , Aspartilglucosaminúria/genética , Aspartilglucosilaminase/genética , Aspartilglucosilaminase/metabolismo , Glicoproteínas/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/enzimologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...